Does a Rock Implement Every Finite-State Automaton?

نویسنده

  • David J. Chalmers
چکیده

Putnam has argued that computational functionalism cannot serve as a foundation for the study of the mind, as every ordinary open physical system implements every finite-state automaton. I argue that Putnam’s argument fails, but that it points out the need for a better understanding of the bridge between the theory of computation and the theory of physical systems: the relation of implementation. It also raises questions about the classes of automata that can serve as a basis for understanding the mind. I develop an account of implementation, linked to an appropriate class of automata, such that the requirement that a system implement a given automaton places a very strong constraint on the system. This clears the way for computation to play a central role in the analysis of mind.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nondeterminism is essential in small two-way finite automata with few reversals

On every n-long input, every two-way finite automaton (fa) can reverse its input head O(n) times before halting. A fawith few reversals is an automaton where this number is only o(n). For every h, we exhibit a language that can be recognized by an h-state nondeterministic fa with few reversals, but requires Ω(2) states on every deterministic fa with few reversals.

متن کامل

BCK-ALGEBRAS AND HYPER BCK-ALGEBRAS INDUCED BY A DETERMINISTIC FINITE AUTOMATON

In this note first we define a BCK‐algebra on the states of a deterministic finite automaton. Then we show that it is a BCK‐algebra with condition (S) and also it is a positive implicative BCK‐algebra. Then we find some quotient BCK‐algebras of it. After that we introduce a hyper BCK‐algebra on the set of all equivalence classes of an equivalence relation on the states of a deterministic finite...

متن کامل

Impact of memory size on graph exploration capability

A mobile agent (robot), modeled as a finite automaton, has to visit all nodes of a regular graph. How does the memory size of the agent (the number of states of the automaton) influence its exploration capability? In particular, does every increase of the memory size enable an agent to explore more graphs? We give a partial answer to this problem by showing that a strict gain of the exploration...

متن کامل

Program Repair as a Game

We present a conservative method to automatically fix faults in a finite state program by considering the repair problem as a game. The game consists of the product of a modified version of the program and an automaton representing the LTL specification. Every winning finite state strategy for the game corresponds to a repair. The opposite does not hold, but we show conditions under which the e...

متن کامل

Soil and Rock Slope Stability Analysis based on Numerical Manifold Method and Graph Theory

Limit equilibrium method, strength reduction method and Finite Difference Methods are the most prevalently used methods for soil and rock slope stability analysis. However, it can be mention that those have some limitations in practical application. In the Limit equilibrium method, the constitutive model cannot be considered and many assumptions are needed between slices of soil and rock. The s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996